Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biosci Bioeng ; 137(3): 187-194, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281859

RESUMO

Overexpression of proteins by introducing a DNA vector is among the most important tools for the metabolic engineering of microorganisms such as Escherichia coli. Protein overexpression imposes a burden on metabolism because metabolic pathways must supply building blocks for protein and DNA synthesis. Different E. coli strains have distinct metabolic capacities. In this study, two proteins were overexpressed in four E. coli strains (MG1655(DE3), W3110(DE3), BL21star(DE3), and Rosetta(DE3)), and their effects on metabolic burden were investigated. Metabolomic analysis showed that E. coli strains overexpressing green fluorescent protein had decreased levels of several metabolites, with a positive correlation between the number of reduced metabolites and green fluorescent protein expression levels. Moreover, nucleic acid-related metabolites decreased, indicating a metabolic burden in the E. coli strains, and the growth rate and protein expression levels were improved by supplementation with the five nucleosides. In contrast, two strains overexpressing delta rhodopsin, a microbial membrane rhodopsin from Haloterrigena turkmenica, led to a metabolic burden and decrease in the amino acids Ala, Val, Leu, Ile, Thr, Phe, Asp, and Trp, which are the most frequent amino acids in the delta rhodopsin protein sequence. The metabolic burden caused by protein overexpression was influenced by the metabolic capacity of the host strains and the sequences of the overexpressed proteins. Detailed characterization of the effects of protein expression on the metabolic state of engineered cells using metabolomics will provide insights into improving the production of target compounds.


Assuntos
Escherichia coli , Rodopsina , Proteínas de Fluorescência Verde/genética , Escherichia coli/genética , Metaboloma , Aminoácidos , DNA
2.
J Gen Appl Microbiol ; 69(4): 185-195, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36935115

RESUMO

Although n-butanol (BuOH) is an ideal fuel because of its superior physical properties, it has toxicity to microbes. Previously, a Synechococcus elongatus PCC 7942 derivative strain that produces BuOH from CO2 was developed by introducing six heterologous genes (BUOH-SE strain). To identify the bottleneck in BuOH production, the effects of BuOH production and its toxicity on central metabolism and the photosystem were investigated. Parental (WT) and BUOH-SE strains were cultured under autotrophic conditions. Consistent with the results of a previous study, BuOH production was observed only in the BUOH-SE strain. Isotopically non-stationary 13C-metabolic flux analysis revealed that the CO2 fixation rate was much larger than the BuOH production rate in the BUOH-SE strain (1.70 vs 0.03 mmol gDCW-1 h-1), implying that the carbon flow for BuOH biosynthesis was less affected by the entire flux distribution. No large difference was observed in the flux of metabolism between the WT and BUOH-SE strains. Contrastingly, in the photosystem, the chlorophyll content and maximum O2 evolution rate per dry cell weight of the BUOH-SE strain were decreased to 81% and 43% of the WT strain, respectively. Target proteome analysis revealed that the amounts of some proteins related to antennae (ApcA, ApcD, ApcE, and CpcC), photosystem II (PsbB, PsbU, and Psb28-2), and cytochrome b6f complex (PetB and PetC) in photosystems decreased in the BUOH-SE strain. The activation of photosynthesis would be a novel approach for further enhancing BuOH production in S. elongatus PCC 7942.


Assuntos
1-Butanol , Proteoma , Proteoma/genética , Complexo Citocromos b6f , Dióxido de Carbono , Fotossíntese , Butanóis
3.
Mass Spectrom (Tokyo) ; 12(1): A0138, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090113

RESUMO

Non-targeted metabolome analysis studies comprehensively acquire product ion spectra from the observed ions by the data-dependent acquisition (DDA) mode of tandem mass spectrometry (MS). A DDA dataset redundantly contains closely similar product ion spectra of metabolites commonly existing among the biological samples analyzed in a metabolome study. Moreover, a single DDA data file often includes two or more closely similar raw spectra obtained from an identical precursor ion. The redundancy of product ion spectra has been used to generate an averaged product ion spectrum from a set of similar product ion spectra recorded in a DDA dataset. The spectral averaging improved the accuracy of m/z values and signal-to-noise levels of product ion spectra. However, the origins of redundancy, variations among datasets, and these effects on the spectral averaging procedure needed to be better characterized. This study investigated the nature of the redundancy by comparing the averaging results of eight DDA datasets of non-targeted metabolomics studies. The comparison revealed a significant variation in redundancy among datasets. The DDA datasets obtained by the quadrupole (Q)-Orbitrap-MS datasets had more significant intrafile redundancy than that of the Q-time-of-flight-MS. For evaluating the similarity score between two production spectra, the optimal threshold level of the cosine-product method was approximately 0.8-0.9. Moreover, contamination of biological samples such as plasticizers was another origin of spectral redundancy. The results will be the basis for further development of methods for processing of product ion spectra data. Copyright © 2023 Fumio Matsuda. This is an open-access article distributed under the terms of Creative Commons Attribution Non-Commercial 4.0 International License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. Please cite this article as: Mass Spectrom (Tokyo) 2023; 12(1): A0138.

4.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003568

RESUMO

Saccharomyces cerevisiae is a promising host for the bioproduction of higher alcohols, such as 2,3-butanediol (2,3-BDO). Metabolically engineered S. cerevisiae strains that produce 2,3-BDO via glycolysis have been constructed. However, the specific 2,3-BDO production rates of engineered strains must be improved. To identify approaches to improving the 2,3-BDO production rate, we investigated the factors contributing to higher ethanol production rates in certain industrial strains of S. cerevisiae compared to laboratory strains. Sequence analysis of 11 industrial strains revealed the accumulation of many nonsynonymous substitutions in RIM15, a negative regulator of high fermentation capability. Comparative metabolome analysis suggested a positive correlation between the rate of ethanol production and the activity of the pyruvate-consuming pathway. Based on these findings, RIM15 was deleted, and the pyruvate-consuming pathway was activated in YHI030, a metabolically engineered S. cerevisiae strain that produces 2,3-BDO. The titer, specific production rate, and yield of 2,3-BDO in the test tube-scale culture using the YMS106 strain reached 66.4 ± 4.4 mM, 1.17 ± 0.017 mmol (g dry cell weight h)-1, and 0.70 ± 0.03 mol (mol glucose consumed)-1. These values were 2.14-, 2.92-, and 1.81-fold higher than those of the vector control, respectively. These results suggest that bioalcohol production via glycolysis can be enhanced in a metabolically engineered S. cerevisiae strain by deleting RIM15 and activating the pyruvate-consuming pathway.


Assuntos
Ácido Pirúvico , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Pirúvico/metabolismo , Engenharia Metabólica/métodos , Butileno Glicóis/metabolismo , Fermentação , Etanol/metabolismo
5.
Microb Cell Fact ; 22(1): 204, 2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37807050

RESUMO

BACKGROUND: "ATP wasting" has been observed in 13C metabolic flux analyses of Saccharomyces cerevisiae, a yeast strain commonly used to produce ethanol. Some strains of S. cerevisiae, such as the sake strain Kyokai 7, consume approximately two-fold as much ATP as laboratory strains. Increased ATP consumption may be linked to the production of ethanol, which helps regenerate ATP. RESULTS: This study was conducted to enhance ethanol and 2,3-butanediol (2,3-BDO) production in the S. cerevisiae strains, ethanol-producing strain BY318 and 2,3-BDO-producing strain YHI030, by expressing the fructose-1,6-bisphosphatase (FBPase) and ATP synthase (ATPase) genes to induce ATP dissipation. The introduction of a futile cycle for ATP consumption in the pathway was achieved by expressing various FBPase and ATPase genes from Escherichia coli and S. cerevisiae in the yeast strains. The production of ethanol and 2,3-BDO was evaluated using high-performance liquid chromatography and gas chromatography, and fermentation tests were performed on synthetic media under aerobic conditions in batch culture. The results showed that in the BY318-opt_ecoFBPase (expressing opt_ecoFBPase) and BY318-ATPase (expressing ATPase) strains, specific glucose consumption was increased by 30% and 42%, respectively, and the ethanol production rate was increased by 24% and 45%, respectively. In contrast, the YHI030-opt_ecoFBPase (expressing opt_ecoFBPase) and YHI030-ATPase (expressing ATPase) strains showed increased 2,3-BDO yields of 26% and 18%, respectively, and the specific production rate of 2,3-BDO was increased by 36%. Metabolomic analysis confirmed the introduction of the futile cycle. CONCLUSION: ATP wasting may be an effective strategy for improving the fermentative biosynthetic capacity of S. cerevisiae, and increased ATP consumption may be a useful tool in some alcohol-producing strains.


Assuntos
Etanol , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Etanol/metabolismo , Engenharia Metabólica/métodos , Fermentação , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo
6.
Sci Rep ; 13(1): 18549, 2023 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-37899460

RESUMO

4-hydroxytamoxifen (OHT) is an anti-cancer drug that induces apoptosis in breast cancer cells. Although changes in lipid levels and mitochondrial respiration have been observed in OHT-treated cells, the overall mechanisms underlying these metabolic alterations are poorly understood. In this study, time-series metabolomics and lipidomics were used to analyze the changes in metabolic profiles induced by OHT treatment in the MCF-7 human breast cancer cell line. Lipidomic and metabolomic analyses revealed increases in ceramide, diacylglycerol and triacylglycerol, and decreases in citrate, respectively. Gene expression analyses revealed increased expression of ATP-dependent citrate lyase (ACLY) and subsequent fatty acid biosynthetic enzymes, suggesting that OHT-treated MCF-7 cells activate citrate-to-lipid metabolism. The significance of the observed metabolic changes was evaluated by co-treating MCF-7 cells with OHT and ACLY or a diacylglycerol O-acyltransferase 1 (DGAT1) inhibitor. Co-treatment ameliorated cell death and reduced mitochondrial membrane potential compared to that in OHT treatment alone. The inhibition of cell death by co-treatment with an ACLY inhibitor has been observed in other breast cancer cell lines. These results suggest that citrate-to-lipid metabolism is critical for OHT-induced cell death in breast cancer cell lines.


Assuntos
Neoplasias da Mama , Lipidômica , Humanos , Feminino , Células MCF-7 , Tamoxifeno/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Apoptose , Metaboloma , Citratos
7.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1868(10): 159379, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37659899

RESUMO

Filamentous fungi undergo significant cellular morphological changes during their life cycle. It has recently been reported that deletions of genes that are involved in phospholipid synthesis led to abnormal hyphal morphology and differentiation in filamentous fungi. Although these results suggest the importance of phospholipid balance in their life cycle, comprehensive analyses of cellular phospholipids are limited. Here, we performed lipidomic analysis of A. nidulans during morphological changes in a liquid medium and of colonies on a solid medium. We observed that the phospholipid composition and transcription of the genes involved in phospholipid synthesis changed dynamically during the life cycle. Specifically, the levels of phosphatidylethanolamine, and highly unsaturated phospholipids increased during the establishment of polarity. Furthermore, we demonstrated that the phospholipid composition in the hyphae at colony margins is similar to that during conidial germination. Furthermore, we demonstrated that common and characteristic phospholipid changes occurred during germination in A. nidulans and A. oryzae, and that species-specific changes also occurred. These results suggest that the exquisite regulation of phospholipid composition is crucial for the growth and differentiation of filamentous fungi.


Assuntos
Aspergillus nidulans , Fosfolipídeos , Animais , Aspergillus nidulans/genética , Estágios do Ciclo de Vida , Lipidômica , Especificidade da Espécie
8.
Artigo em Inglês | MEDLINE | ID: mdl-36884375

RESUMO

Two strains were isolated from flowers and insects in Japan, namely NBRC 115686T and NBRC 115687, respectively. Based on sequence analysis of the D1/D2 domain of the 26S large subunit (LSU) rRNA gene and the internal transcribed spacer (ITS) region and physiological characteristics, these strains were found to represent a novel yeast species of the genus Wickerhamiella. Considering pairwise sequence similarity, NBRC 115686T and NBRC 115687 differ from the type strain of the most closely related species, Wickerhamiella galacta NRRL Y-17645T, by 65-66 nucleotide substitutions with 12 gaps (11.65-11.83 %) in the D1/D2 domain of the LSU rRNA gene. The novel species differ from the closely related Wickerhamiella species in some physiological characteristics. For example, compared with Wickerhamiella galacta JCM 8257T, NBRC 115686T and NBRC 115687 assimilated d-galactose, and could grow at 35 and 37 °C. Hence, the name Wickerhamiella bidentis sp. nov. is proposed to accommodate this species in the genus Wickerhamiella. The holotype is NBRC 115686T (ex-type strain JCM 35540=CBS 18008).


Assuntos
Ácidos Graxos , Flores , Animais , Japão , Filogenia , Análise de Sequência de DNA , DNA Fúngico/genética , Técnicas de Tipagem Micológica , Composição de Bases , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química , Insetos , DNA Espaçador Ribossômico/genética , Tailândia
9.
ACS Synth Biol ; 12(1): 305-318, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36563322

RESUMO

Recombination of biosynthetic gene clusters including those of non-ribosomal peptide synthetases (NRPSs) is essential for understanding the mechanisms of biosynthesis. Due to relatively huge gene cluster sizes ranging from 10 to 150 kb, the prevalence of sequence repeats, and inability to clearly define optimal points for manipulation, functional characterization of recombinant NRPSs with maintained activity has been hindered. In this study, we introduce a simple yet rapid approach named "Seamed Express Assembly Method (SEAM)" coupled with Ordered Gene Assembly in Bacillus subtilis (OGAB) to reconstruct fully functional plipastatin NRPS. This approach is enabled by the introduction of restriction enzyme sites as seams at module borders. SEAM-OGAB is then first demonstrated by constructing the ppsABCDE NRPS (38.4 kb) to produce plipastatin, a cyclic decapeptide in B. subtilis. The introduced amino acid level seams do not hinder the NRPS function and enable successful production of plipastatin at a commensurable titer. It is challenging to modify the plipastatin NRPS gene cluster due to the presence of three long direct-repeat sequences; therefore, this study demonstrates that SEAM-OGAB can be readily applied towards the recombination of various NRPSs. Compared to previous NRPS gene assembly methods, the advantage of SEAM-OGAB is that it readily enables the shuffling of NRPS gene modules, and therefore, chimeric NRPSs can be rapidly constructed for the production of novel peptides. This chimeric assembly application of SEAM-OGAB is demonstrated by swapping plipastatin NRPS and surfactin NRPS modules to produce two novel lipopeptides in B. subtilis.


Assuntos
Bacillus subtilis , Peptídeo Sintases , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Peptídeo Sintases/metabolismo , Sequência de Bases , Lipopeptídeos/genética
10.
J Biosci Bioeng ; 135(2): 102-108, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36494248

RESUMO

Although various yeast strains used in the food industry have been characterized by multilayer analysis, knowledge of the variation of lipid profiles involved in fermentation characteristics and stress tolerance remains in its infancy. In this study, untargeted lipidomics was applied to 10 yeast strains, including laboratory, baker's, wine, and sake yeasts, which exhibit distinct fermentation phenotypes, to obtain a comprehensive overview of the yeast lipidome. The relative standard deviation (RSD) in the abundance of the 352 identified lipid molecular species was investigated to reveal the specific and common lipids. Lipids containing very long-chain fatty acids and hydroxy long-chain fatty acids showed relatively large RSD, whereas lipids containing acyl chains, which are commonly found in yeast, such as C16-C18, showed less RSD among the 10 strains. Furthermore, principal component analysis of lipid profiles showed similar trends among industrial yeast strains. As lipids are involved in yeast phenotypes, including stress tolerance and fermentation characteristics, correlation analysis was performed with lipid abundance and phenotypes. The results revealed that molecular species with a high RSD in abundance among the 10 strains were correlated with specific stress tolerance and fermentation phenotypes.


Assuntos
Proteínas de Saccharomyces cerevisiae , Vinho , Saccharomyces cerevisiae/metabolismo , Lipidômica , Proteínas de Saccharomyces cerevisiae/genética , Vinho/análise , Ácidos Graxos , Fermentação
11.
ACS Synth Biol ; 11(12): 3966-3972, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36441576

RESUMO

Bioconversion of key intermediate metabolites such as mevalonate into various useful chemicals is a promising strategy for microbial production. However, the conversion of mevalonate into isoprenoids requires a supply of adenosine triphosphate (ATP). Light-driven ATP regeneration using microbial rhodopsin is an attractive module for improving the intracellular ATP supply. In the present study, we demonstrated the ATP-consuming conversion of mevalonate to isoprenol using rhodopsin-expressing Escherichia coli cells as a whole-cell catalyst in a medium that does not contain energy cosubstrate, such as glucose. Heterologous genes for the synthesis of isoprenol from mevalonate, which requires three ATP molecules for the series of reactions, and a delta-rhodopsin gene derived from Haloterrigena turkmenica were cointroduced into E. coli. To evaluate the conversion efficiency of mevalonate to isoprenol, the cells were suspended in a synthetic medium containing mevalonate as the sole carbon source and incubated under dark or light illumination (100 µmol m-2 s-1). The specific isoprenol production rates were 10.0 ± 0.9 and 20.4 ± 0.7 µmol gDCW-1 h-1 for dark and light conditions, respectively. The conversion was successfully enhanced under the light condition. Furthermore, the conversion efficiency increased with increasing illumination intensity, suggesting that ATP regenerated by the proton motive force generated by rhodopsin using light energy can drive ATP-consuming reactions in the whole-cell catalyst.


Assuntos
Escherichia coli , Ácido Mevalônico , Ácido Mevalônico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Trifosfato de Adenosina/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Açúcares/metabolismo
12.
J Biosci Bioeng ; 134(6): 484-490, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36171161

RESUMO

A light-driven ATP regeneration system using rhodopsin has been utilized as a method to improve the production of useful substances by microorganisms. To enable the industrial use of this system, the proton pumping rate of rhodopsin needs to be enhanced. Nonetheless, a method for this enhancement has not been established. In this study, we attempted to develop an evolutionary engineering method to improve the proton-pumping activity of rhodopsins. We first introduced random mutations into delta-rhodopsin (dR) from Haloterrigena turkmenica using error-prone PCR to generate approximately 7000 Escherichia coli strains carrying the mutant dR genes. Rhodopsin-expressing E. coli with enhanced proton pumping activity have significantly increased survival rates in prolonged saline water. Considering this, we enriched the mutant E. coli cells with higher proton pumping rates by selecting populations able to survive starvation under 50 µmol m-2 s-1 at 37 °C. As a result, we successfully identified two strains, in which proton pumping activity was enhanced two-fold by heterologous expression in E. coli in comparison to wild-type strains. The combined approach of survival testing using saline water and evolutionary engineering methods used in this study will contribute greatly to the discovery of a novel rhodopsin with improved proton pumping activity. This will facilitate the utilization of rhodopsin in industrial applications.


Assuntos
Escherichia coli , Rodopsina , Rodopsina/genética , Escherichia coli/genética , Prótons
13.
Metab Eng ; 73: 192-200, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35921945

RESUMO

Cancer cells adapt their intracellular energy metabolism to the oxygen-deprived tumor microenvironment (TME) to ensure tumor progression. This adaptive mechanism has focused attention on the metabolic phenotypes of tumor cells under hypoxic TME for developing novel cancer therapies. Although widely used monolayer (2D) culture does not fully reflect in vivo hypoxic TME, spheroid (3D) culture can produce a milieu similar to the TME in vivo. However, how different metabolic phenotypes are expressed in 3D cultures mimicking tumor hypoxia compared with 2D cultures under hypoxia remains unclear. To address this issue, we investigated the metabolic phenotypes of 2D- and 3D-cultured cancer cells by 13C-metabolic flux analysis (13C-MFA). Principal component analysis of 13C mass isotopomer distributions clearly demonstrated distinct metabolic phenotypes of 3D-cultured cells. 13C-MFA clarified that 3D culture significantly upregulated pyruvate carboxylase flux in line with the pyruvate carboxylase protein expression level. On the other hand, 3D culture downregulated glutaminolytic flux. Consistent with our findings, 3D-cultured cells are more resistant to a glutaminase inhibitor than 2D-cultured cells. This study suggests the importance of considering the metabolic characteristics of the particular in vitro model used for research on cancer metabolism.


Assuntos
Neoplasias , Hipóxia Tumoral , Técnicas de Cultura de Células , Humanos , Análise do Fluxo Metabólico , Neoplasias/genética , Neoplasias/patologia , Fenótipo , Piruvato Carboxilase , Microambiente Tumoral/genética
14.
Metabolites ; 12(7)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35888770

RESUMO

Isotope tracing is a powerful technique for elucidating intracellular metabolism. Experiments utilizing this technique involve various processes, such as the correction of natural isotopes. Although some previously developed software are available for these procedures, there are still time-consuming steps in isotope tracing including the creation of an isotope measurement method in mass spectrometry (MS) and the interpretation of obtained labeling data. Additionally, these multi-step tasks often require data format conversion, which is also time-consuming. In this study, the Isotope Calculation Gadgets, a series of software that supports an entire workflow of isotope-tracing experiments, was developed in the Garuda platform, an open community. Garuda is a graphical user interface-based platform that allows individual operations to be sequentially performed, without data format conversion, which significantly reduces the required time and effort. The developed software includes new features that construct channels for isotopomer measurements, as well as conventional functions such as natural isotope correction, the calculation of fractional labeling and split ratio, and data mapping, thus facilitating an overall workflow of isotope-tracing experiments through smooth functional integration.

15.
DNA Res ; 29(3)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35608323

RESUMO

Partial bacterial genome reduction by genome engineering can improve the productivity of various metabolites, possibly via deletion of non-essential genome regions involved in undesirable metabolic pathways competing with pathways for the desired end products. However, such reduction may cause growth defects. Genome reduction of Bacillus subtilis MGB874 increases the productivity of cellulases and proteases but reduces their growth rate. Here, we show that this growth defect could be restored by silencing redundant or less important genes affecting exponential growth by manipulating the global transcription factor AbrB. Comparative transcriptome analysis revealed that AbrB-regulated genes were upregulated and those involved in central metabolic pathway and synthetic pathways of amino acids and purine/pyrimidine nucleotides were downregulated in MGB874 compared with the wild-type strain, which we speculated were the cause of the growth defects. By constitutively expressing high levels of AbrB, AbrB regulon genes were repressed, while glycolytic flux increased, thereby restoring the growth rate to wild-type levels. This manipulation also enhanced the productivity of metabolites including γ-polyglutamic acid. This study provides the first evidence that undesired features induced by genome reduction can be relieved, at least partly, by manipulating a global transcription regulation system. A similar strategy could be applied to other genome engineering-based challenges aiming toward efficient material production in bacteria.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
iScience ; 25(5): 104221, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35494234

RESUMO

Drugs used in combination can synergize to increase efficacy, decrease toxicity, and prevent drug resistance. While conventional high-throughput screens that rely on univariate data are incredibly valuable to identify promising drug candidates, phenotypic screening methodologies could be beneficial to provide deep insight into the molecular response of drug combination with a likelihood of improved clinical outcomes. We developed a high-content metabolomics drug screening platform using stable isotope-tracer direct-infusion mass spectrometry that informs an algorithm to determine synergy from multivariate phenomics data. Using a cancer drug library, we validated the drug screening, integrating isotope-enriched metabolomics data and computational data mining, on a panel of prostate cell lines and verified the synergy between CB-839 and docetaxel both in vitro (three-dimensional model) and in vivo. The proposed unbiased metabolomics screening platform can be used to rapidly generate phenotype-informed datasets and quantify synergy for combinatorial drug discovery.

17.
Metab Eng ; 72: 227-236, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35346842

RESUMO

In microbial fermentative production, ATP regeneration, while crucial for cellular processes, conflicts with efficient target chemical production because ATP regeneration exhausts essential carbon sources also required for target chemical biosynthesis. To wrestle with this dilemma, we harnessed the power of microbial rhodopsins with light-driven proton pumping activity to supplement with ATP, thereby facilitating the bioproduction of various chemicals. We first demonstrated a photo-driven ATP supply and redistribution of metabolic carbon flows to target chemical synthesis by installing already-known delta rhodopsin (dR) in Escherichia coli. In addition, we identified novel rhodopsins with higher proton pumping activities than dR, and created an engineered cell for in vivo self-supply of the rhodopsin-activator, all-trans-retinal. Our concept exploiting the light-powering ATP supplier offers a potential increase in carbon use efficiency for microbial productions through metabolic reprogramming.


Assuntos
Bombas de Próton , Rodopsina , Trifosfato de Adenosina/genética , Carbono/metabolismo , Luz , Optogenética , Bombas de Próton/química , Bombas de Próton/genética , Bombas de Próton/metabolismo , Prótons , Rodopsina/química , Rodopsina/genética , Rodopsina/metabolismo , Rodopsinas Microbianas/genética
18.
Metabolites ; 12(2)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35208208

RESUMO

Metabolomics can help identify candidate biomarker metabolites whose levels are altered in response to disease development or drug administration. However, assessment of the underlying molecular mechanism is challenging considering it depends on the researcher's knowledge. This study reports a novel method for the automated recommendation of keywords known in the literature that may be overlooked by researchers. The proposed method aided in the identification of Medical Subject Headings (MeSH) terms in PubMed using MeSH co-occurrence data. The intended users are biocurators who have identified specific biomarker metabolites from a metabolomics study and would like to identify literature-reported molecular mechanisms that are associated with both the metabolite and their research area of interest. The proposed method finds MeSH terms that co-occur with a MeSH term of the candidate biomarker metabolite as well as a MeSH term of a researcher's known keyword, such as the name of a disease. The connectivity score S was determined using association analysis. Pilot analyses demonstrated that, while the biological significance of the obtained MeSH terms could not be guaranteed, the developed method can be useful for finding keywords to further investigate molecular mechanisms in association with candidate biomarker molecules.

19.
Metabolites ; 12(2)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35208210

RESUMO

In mass spectrometry-based metabolomics, the differences in the analytical results from different laboratories/machines are an issue to be considered because various types of machines are used in each laboratory. Moreover, the analytical methods are unique to each laboratory. It is important to understand the reality of inter-laboratory differences in metabolomics. Therefore, we have evaluated whether the differences in analytical methods, with the exception sample pretreatment and including metabolite extraction, are involved in the inter-laboratory differences or not. In this study, nine facilities are evaluated for inter-laboratory comparisons of metabolomic analysis. Identical dried samples prepared from human and mouse plasma are distributed to each laboratory, and the metabolites are measured without the pretreatment that is unique to each laboratory. In these measurements, hydrophilic and hydrophobic metabolites are analyzed using 11 and 7 analytical methods, respectively. The metabolomic data acquired at each laboratory are integrated, and the differences in the metabolomic data from the laboratories are evaluated. No substantial difference in the relative quantitative data (human/mouse) for a little less than 50% of the detected metabolites is observed, and the hydrophilic metabolites have fewer differences between the laboratories compared with hydrophobic metabolites. From evaluating selected quantitatively guaranteed metabolites, the proportion of metabolites without the inter-laboratory differences is observed to be slightly high. It is difficult to resolve the inter-laboratory differences in metabolomics because all laboratories cannot prepare the same analytical environments. However, the results from this study indicate that the inter-laboratory differences in metabolomic data are due to measurement and data analysis rather than sample preparation, which will facilitate the understanding of the problems in metabolomics studies involving multiple laboratories.

20.
J Biosci Bioeng ; 133(3): 208-212, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34998687

RESUMO

Saccharomyces cerevisiae has been widely used in bioproduction. To produce a target product other than ethanol, ethanol production must be decreased to enhance target production. An ethanol non-producing yeast strain was previously constructed by knocking out pyruvate decarboxylase (PDC) genes in the ethanol synthetic pathway. However, glucose uptake by the ethanol-non-producing yeast strain was significantly decreased. In this study, dead Cas9 (dCas9) was used to reduce ethanol synthesis during 2,3-butanediol production without reduction of glucose. The binding site of guide RNA used to effectively suppress PDC1 promoter-driven red fluorescent protein expression by dCas9 was identified and applied to control PDC1 expression. The production of 2,3-butanediol rather than ethanol was improved in repetitive test tube culture. Additionally, ethanol production was decreased and 2,3-butanediol production was increased in the strain expressing dCas9 targeting the PDC1 promoter in the third round of cultivation, compared with the control strain.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Butileno Glicóis/metabolismo , Expressão Gênica , Piruvato Descarboxilase/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...